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Emittance Growth from Rotated Quadrupoles in Heavy Ion Accelerators�

John J. Barnard
Lawrence Livermore National Laboratory, L-440, Livermore, CA 94550

Abstract. We derive a set of moment equations which
incorporates linear quadrupolar focusing and space-charge
defocusing, even when the quadrupoles have a rotational
misalignment about the direction of beam propagation.
Although the beam emittance measured relative to �xed
transverse x and y coordinate axes is not constant, a con-
served emittance-like quantity has been found. Implica-
tions for alignment tolerances in accelerators for heavy-ion
inertial fusion are discussed.

I. INTRODUCTION

One class of misalignments of interest to accelerator
designers is that class characterized by a rotation about
the axis of propagation. Rotated dipoles, for example, are
known to cause the centroid of a particle beam to wander
o� axis, (since the rotations will result in momentum im-
pulses in the positive and negative y [vertical] direction.)
However rotated quadrupoles will not cause an initially
aligned beam centroid to become misaligned. Quadrupole
rotations do however, create a linear coupling between
the two transverse directions, x (horizontal) and y, in the
equations of motion. Since this coupling enters linearly
in the equations of motion, individual particle oscillation
frequencies can be shifted, and this has implications for
resonance avoidance in synchrotrons, (see ref. [1] and ref-
erences therein). In this paper, we are interested in the ef-
fects on the emittance in beams with non-negligible space
charge such as those proposed for heavy ion inertial fusion.

We derive a set of moment equations which incorpo-
rates this coupling, and which serves as a generalization
to the conventional envelope equations. We show that
even when the equations of motion are linear in x and
y, the beam emittance measured relative to �xed x and
y coordinate axes is not constant, although a conserved
emittance-like quantity can be de�ned. If not corrected,
a beam will acquire a �nite angular momentum and ro-
tation angle, before passing through a �nal focusing lens.
The results presented here will be of use in determining
alignment tolerances in heavy ion accelerators.

II. EQUATIONS OF MOTION

To obtain an estimate, we assume that the force on
an ion comes from two sources only: The external focusing
from a purely quadrupolar �eld, and the space charge of
the beam (image forces have been neglected). For the pur-
poses of this calculation we assume that the space charge
is distributed in a uniform density ellipse, but we allow
the semi-axes of the ellipse and the rotation angle of the
ellipse to evolve as a function of the axial coordinate z.
We assume that the quadrupoles are rotated by an angle �
from the x-axis, and that the beam is rotated by an angle
� from the x-axis. The relation between the coordinates in
the quadrupole frame (indicated by subscript 0) and the
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lab frame (no subscript) are given by:

x = x0 cos � � y0 sin �; y = y0 cos � + x0 sin � (1)

Similarly, the relation between the coordinates in the ro-
tated beam frame (in which the beam semi-axes are par-
allel to the coordinate axes and are indicated by subscript
b) and the lab frame are given by:

x�hxi = xb cos��yb sin�; y�hyi = yb cos�+xb sin�
(2)

Here h i indicates a statistical average over the distribution
function. For a non-relativistic beam moving at constant
velocity �c, the paraxial equations of motion can then be
written as:

x
00 = Kqxxx+Kqxyy+Ksxx(x�hxi)+Ksxy(y�hyi) (3)

y
00 = Kqyyy+Kqyxx+Ksyy(y�hyi) +Ksyx(x� hxi) (4)

Here prime (0) indicates derivative with respect to z and

Kqxx � Kqx0 cos
2
� +Kqy0 sin

2
� = Kqx0 cos 2�

Kqxy � (Kqx0 �Kqy0)(sin � cos �) = Kqx0 sin 2�
Kqyx � (Kqx0 �Kqy0)(sin � cos �) = Kqxy

Kqyy � Kqy0 cos
2
� +Kqx0 sin

2
� = �Kqx0 cos 2�

Ksxx � Ksxb cos
2
�+Ksyb sin

2
�

Ksxy � (Ksxb �Ksyb)(sin� cos�)
Ksyx � (Ksxb �Ksyb)(sin� cos�) = Ksxy

Ksyy � Ksyb cos
2
�+Ksxb sin

2
�

and where

Kqx0 � �
B

0

[B�]
or

E
0

�c[B�]
; Kqy0 � �Kqx0 (5)

Ksxb � K=[2(�x2b + (�x2b�y
2

b )
1=2)];

Ksyb � K=[2(�y2b + (�x2b�y
2

b )
1=2)] (6)

and �x2b and �y2b are the moments in the rotated beam
frame:

�x2b = �x2 cos2 �+�y2 sin2 �+ 2�xy cos� sin� (7)

�y2b = �y2 cos2 �+�x2 sin2 �� 2�xy cos� sin� (8)

Here, K � 2qI=(�3AIo) is the perveance, q is the charge
state of the ions, A is the atomic mass of the ions, � is the
velocity of the ions in units of c, Io � 4��0mpc

3
=e is the

proton characteristic current (�=31 MA), I is the ion beam
current, B0 andE0 are quadrupole magnetic or electric �eld
gradients respectively, [B�] � Amp�c=qe is the ion rigidity,
mp is the proton mass, e is the proton charge, �0 is the free
space permittivity and the operator � is de�ned (as in ref.
[2]) by �ab = habi�haihbi (e.g. �x2 � hx2i�hxi2), where
h i indicates average over particles.

Note that the space charge force, is just the force ob-
tained from the potential of a uniform density ellipse (ref.
[3]), but where the semi-axes a and b have been replaced



by 2(�x2b)
1=2 and 2(�y2b )

1=2, respectively, and where the
location of the centroid determines the zero point of the
space charge force.

The beam rotation angle � may be expressed in terms
of second order moments. From eq. (2), �x2 � �y2 =
(�x2b � �y2b ) cos 2� and �xy = (1=2)(�x2b � �y2b ) sin 2�,
so that

tan 2� =
2�xy

�x2 ��y2
(9)

In deriving eq. 9 we have made use of the fact that �xyb =
0.

III. MOMENT EQUATIONS

Let the distribution function f , be the number of par-
ticles dN per unit transverse phase space volume,

f(x; x0; y; y0; z) =
dN

dxdx0dydy0

The evolution of f is described by the Vlasov/Collisonless
Boltzmann Equation:

@f

@z
+ x0 @f

@x
+ x00 @f

@x0
+ y0 @f

@y
+ y00 @f

@y0
= 0: (10)

The equations of motion for x00 and y00 may be substituted
into eq. 10. The average of a variable � over the continuous
distribution is given by:

h�i(z) �
1

N

Z Z Z Z
�f(x; x0; y; y0; z)dxdx0dydy0:

Using integration by parts, it is then straightforward to
calculate the evolution of the following second order mo-
ments:

d�x2

dz
= 2�xx0

d�xx0

dz
= �x02 +Kxx�x2 +Kxy�xy

d�x02

dz
= 2Kxx�xx0 + 2Kxy�x0y

d�y2

dz
= 2�yy0

d�yy0

dz
= �y02 +Kyy�y2 +Kyx�xy

d�y02

dz
= 2Kyy�yy0 + 2Kyx�xy0

d�xy
dz

= �x0y +�xy0

d�x0y
dz

= �x0y0 +Kxx�xy +Kxy�y2

d�xy0

dz
= �x0y0 +Kyy�xy +Kyx�x2

d�x0y0

dz
= Kxx�xy0 +Kxy�yy0+
Kyy�x0y +Kyx�xx0 (11)

Similarly the evolution of the �rst order moments is given
by:

dhxi

dz
= hx0i

dhyi

dz
= hy0i

dhx0
i

dz
= Kqxxhxi+Kqxyhyi

dhy0i

dz
= Kqyyhyi +Kqyxhxi (12)

In eq. 11,
Kxx � Kqxx +Ksxx

Kyy � Kqyy +Ksyy

Kxy � Kqxy +Ksxy

Kyx � Kqyx +Ksyx = Kxy:
Note that the �rst order moment equations depend

only on �rst order moments, and the second order mo-
ment equations depend only on second order moments, so
that the ten equations for the second order moments form
a closed set and the four equations for the �rst order mo-
ments form another closed set. The centroid motion is
thus decoupled from the envelope motion calculated with
respect to the centroid.

The rms emittance de�ned along the x and y lab frame
axes are de�ned by:

�x � 4
�
�x2�x02 � (�xx0)2

�1=2
�y � 4

�
�y2�y02 � (�yy0)2

�1=2
Using eqs. (11) we can calculate the derivatives of �2x

and �2y (again assuming constant �):

d�2x
dz

= 32Kxy(�x2�x0y ��xy�xx0)

d�2y
dz

= 32Kyx(�y2�xy0 ��xy�yy0) (13)

Since the rotated quads will induce �nite correlations be-
tween x and y the rms emittance is not conserved.

We may also de�ne a quantity l � �xy0��x0y, which
is proportional to the z component of the angular momen-
tum. Again using eqs. (11) and some manipulations using
the de�nitions, eqs. (4), (5) and (9), we �nd,

dl

dz
= (Kqyy �Kqxx)�xy +Kqxy(�x2 ��y2) (14)

As can be seen from eq. 14, the angular momentum is not
necessarily conserved when the quads are rotated. Phys-
ically, after a beam has passed through a quad the beam
will in general be elliptical. On passing through a quad
rotated relative to the �rst, the principal axis of the ellip-
tical beam will not align with the quadrupole axes and a
torque will be applied to the beam, causing a rotation of
the beam. (Note also that eq. 14, does not depend on the
self space-charge forces of the beam, as expected).

Because the focusing strength is a function of z, the ef-
fective external potential well within which the beam trav-
els is z dependent, and so the transverse beam energy H
is also not a constant in z. However, in the hard-edge
model, within each quadrupole and drift section the focus-
ing strength is assumed constant, and therefore the trans-
verse energy is constant. We may use the result of ref. [2],
adding the kinetic and potential energy terms to obtain a
total transverse energy. To obtain the potential energy of
the beam in the external quad �eld, we transform �x2

0
and

�y20 to the lab frame. The result is

2H = �x02 +�y02�
Kqx0

�
(�x2 ��y2) cos 2� + 2�xy sin 2�

�
�

K ln
�
(�x2b)

1=2 + (�y2b )
1=2

�
(15)

Here �x2b and �y2b may be expressed in laboratory quan-
tities using eqs. (7) and (8).



V. \EMITTANCE-LIKE" CONSTANT OF THE
MOTION

Although the emittance is not a constant with respect
to z, a quantity which is related to the emittance is con-
served. We de�ne a generalized emittance �g by:

�2
g
�

1

2
�2
x
+

1

2
�2
y
+ 16(�xy�x0y0 ��xy0�x0y) (16)

It is readily shown using eqs. 11 and 13 that
d�

2

g

dz
= 0.

VI. EXAMPLES OF RESULTS

A code was written to integrate eqs. (11). The results
for �x and �g are plotted in �gure 1 for a singly charged
potassium beam (A = 39) with a current of 2 mA, an
energy of 80 kV, an initial �x and �y of 2:5� 10�5 m rad,
Kqxo = 30:9m�2, and with h�i = 0:0234 and ��2 =0.0156.
The occupancy of the quads was 0.33 and the half-lattice
period was 0.36 m. The integration length was 40 half-
lattice periods.

0 200 400 600 800 1000 1200 1400

z (cm)

0.004

0.006

0.008

0.01

0.012

em
it

x 
(c

m
-r

ad
)

 

Figure 1. �x and �g vs z for both integration of eq. 11,
and particle in cell results.

Also shown in Figure 1 is a 2D particle-in-cell (PIC)
simulation with the same parameters, for an initial dis-
tribution that is KV (ref.[3]), propagating through a pipe
with circular cross section and 6 cm radius. The near iden-
tical overlap of the curves suggests that if the initial dis-
tribution is KV the assumption that the space charge �eld
remains linear is at least a good approximation and pos-
sibly an exact result. The small increase in �g for large
z is probably due to the non-linear image forces arising
because of the �nite pipe radius in the PIC simulations.

When these results are applied to the small recircu-
lator of ref. [4], we �nd that with 2 mrad rms errors,
there occurs only a 2% increase in emittance for a beam
which drifts (rather than accelerates) the nominal 15 laps.
When the rotation errors are random over all 15 laps the
emittance increases by about 50%. An accelerated beam
will presumably show behavior somewhere in-between, and
generalization of the theory presented here to include ac-
celeration is in progress.

VII. DISCUSSION AND CONCLUSION

In the inertial fusion application, the ultimate goal is
to focus the beam onto a small, 2-3 mm spot at the tar-
get. The �nal emittance is one of the important parameters
needed to calculate the achievable �nal spot size (see e.g.

ref.[5]). When quadrupole rotation errors are present, the
beam will in general have a �nite rotation angle and rota-
tion rate, and will focus down to a more elliptical shape
than in the absence of errors, reducing the power level that
falls within a given spot radius. Analogous to the case of
centroid displacements, it is conceivable that a system of
intentionally rotated quads could compensate for the ac-
cumulated errors if the ten moments in eq. 11 are known.

In summary, we have used a formulation, in which the
major assumption is that the space charge force can be
calculated by assuming that the beam remains a uniform
density ellipse with a shape that evolves in z. Under this
assumption we have a derived a set of moment equations
which generalizes the conventional envelope equations. We
have found the misalignments cause the beam to acquire
an overall angular momentum, and an increase in emit-
tance measured relative to �xed laboratory axes. A gen-
eralized emittance has been de�ned which is a conserved
quantity (when the forces remain linear). Particle-in-cell
results have shown agreement with the moment equations,
and have suggested that the formulation may be exact if
the initial distribution is KV. We have applied this method
to estimate rotation alignment tolerances in the small recir-
culator of ref [4], and have suggested that this formulation
will be useful when setting alignment tolerances and/or
correction methods in an inertial fusion driver.
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